

Year 11 Mathematics Specialist Test 4 2019

Calculator Free **Trigonometry**

STUDENT'S NAME

DATE: Monday 1 July

TIME: 35 minutes

MARKS: 34

INSTRUCTIONS:

Standard Items: Pens, pencils, drawing templates, eraser, scientific calculator

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

1. (1 mark)

Simplify: $\cos^2\left(\frac{5\pi}{23}\right) + \sin^2\left(\frac{5\pi}{23}\right)$

2. (3 marks)

If $\sin \theta = -\frac{3}{5}$ and $\pi \le \theta \le \frac{3\pi}{2}$, find an expression (using fractions) for $\cos 2\theta$

3. (10 marks)

Solve the following trigonometric equations exactly over the given domains:

(a)
$$\sqrt{2}\sin(3x) = 1$$
 $0 \le x \le \pi$ [3]

(b)
$$3\csc^2 x - 4 = 0$$
 $-\pi \le x \le \pi$ [3]

(c)
$$5\sin x - 2\cos^2 x = 1$$
 $-2\pi \le x \le 2\pi$ [4]

4. (3 marks)

Prove: $\sin^2\theta \cot^2\theta + 2\sin^2\theta + \cos^2\theta = 2$

5. (4 marks)

Prove the triple angle identity $\sin 3x = 3\sin x - 4\sin^3 x$.

6. (4 marks)

Prove: $(\csc^2\theta - 2)(\tan^2\theta + 1) = \csc^2\theta - \sec^2\theta$

7. (5 marks)

Prove the following identity.

 $1 + 2\cos 2\theta + \cos 4\theta = 8\cos^4\theta - 4\cos^2\theta$

8. (4 marks)

(a) Write the expression $4\sin\theta + 5\cos\theta$ in the form $R\sin(\theta + \alpha)$, where R is a constant and α is an acute angle in radians. [2]

(b) Use your expression above to solve algebraically the equation $4\sin\theta + 5\cos\theta = 4$ for $-\frac{\pi}{2} \le \theta \frac{3\pi}{2}$. [2]